MIMO Discrete Nonlinear Adaptive NN Control using
a Learning Algorithm Based on Kalman Filtering

Edgar N. Sanchez and Alma Y. Alanis

CINVESTAYV, Unidad Guadalajara, Apartado Postal 31-438,

Plaza La Luna, Guadalajara, Jalisco, C.P. 45091, Mexico
sanchez@gdl.cinvestav.mx

Abstract. This paper deals with the adaptive tracking problem for MIMO
nonlinear systems in discrete-time in presence of bounded disturbances. In this
paper, a high order neural network structure is used to emulate the control law
designed by the backstepping method. The paper includes the respective stabil-
ity analysis on the basis of the Lyapunov approach for the extended Kalman fil-
ter (EKF)-based NN training algorithm.
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1 Introduction

Neural networks (NN) have become a well-established methodology as exemplified
by their applications to identification and control of general nonlinear and complex
systems. In particular, the use of high order neural networks for modeling and learn-
ing has increased recently [7). There are some publications about the trajectory track-
ing using neural networks ([7], [5), [6]); in most of them the methodology is based on
a Lyapunov method. However most of those works were developed for continuous-
time systems. For discrete-time systems, the control problem is more complex due to
the couplings among subsystems, inputs and outputs. Besides the difficulty of cou-
plings, the noncausal problem is another difficulty that has to be solved when con-
structing adaptive controllers for discrete-time systems in strict feedback form [2].
Few results have been published in comparison with those for continuous-time do-
main ([2), [3]). By other hand discrete-time neural networks are more convenient for
real-time applications.

The method presented here has some advantages; the first one is the application to
MIMO nonlinear systems in discrete-time; the second one is to guarantee the bounde-
ness of the error in presence of disturbances, and the third one is the use of a trans-
formation to avoid the causality problem. Finally, this paper also proposes the use of
High Order Neural Networks (HONN) to emulate the control law designed by the
backstepping-method [3]. In this paper, we propose a modification of the method
presented in [3]. This modification basically consist in changing the neural network
learning rule propose there by a learning algorithm based on the (EKF) [1].
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2 Mathematical preliminaries

Through this paper we use k as the step sampling ke 0LO", |0| for the absolute
value, [|o] for the Euclidian norm for vectors and for any adequate norm for matrices,

For more details related to this section see [3].
Consider a MIMO nonlinear system:

x(k +1) = F(x(k), u(k)) (1)
Definition 1. The solution of (1) is semiglobally uniformly ultimately bounded

(SGUUB), if for any Q , a compact subset of ‘Rz"‘"' and all x(k,)e Q, there exists
an €0 and a number N(g, x(k,)) such that |x(k)||<e for allk 2k, + N . In other

words, the solution of (1) is said to be SGUUB if, for any apriori given (arbitrarily
large) bounded set Q and any apriori given (arbitrarily small) set ,, which con-

tains (0,0) as an interior point, there eXists a control u, such that every trajectory of
the closed loop system starting from Q enters the set Q, = {x(k)|||x(k)| <€}, ina

finite time and remains in it thereafter [3].
Definition 2. Let ¥ (x(k)) be a Lyapunov function of a discrete-time system, which

satisfies the following properties [3]:
A0 ERLCORAZO)
V(x(k+1)-V(x(k)) = AVx(kD S -7 (0 +7(0)

where { is a positive constant, %, (¢) and , () are strictly increasing functions, and
%,(®) is a continuous, nondecreasing function. Thus if

AV(x)<0 for |x(k)f>¢
then x(k) is uniformly ultimately bounded, i.e. there exists a time instant k;, such
||x(k)|| <{,Vk<k,.
Lemma 1: Consider the linear time varying discrete-time system given by
x(k+1)= A(k)x(k)+ Bu(k) )
y(k) = Cx(k)
where A(k), B and C are appropriately dimensional matrices. Let ®(k(1),k(0)) be
the state-transition matrix corresponding to A(k) for system (2), i.e.

k=k, =]

O(k(D), k(0)) = [, i) 4CK)
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If || (k1) k(0))] <1 V(1) > k(0) >0, then the system (2) is 1) globally exponen-
tially stable for the unforced system and 2) Bounded Input-Bounded Output (BIBO)
stable.

3 Discrete-time High Order Neural Networks

Under certain conditions, it has been proven that several approximation methods,
such NN, have function approximation abilities, and have been frequently used as
function approximators. There are several types of NN that have been frequently
used. For clarity and simplicity in this paper the HONN is consider:

¢(w,z) = w S(z), we R™,S(z)e R’ (3
S(Z) = [sl (Z),Sz (z))-'.isl (z)]r
5,) = [1,., [s1"", i=1,2,,4
where z=[z,z,,",2, ] € Q, cR? are positive integer; / denotes the NN node
number; p is the dimension of the function vector; {/,,1,,::-,1,} is a collection of

not-ordered subsets of {1,2,--,q} and d, (i)are nonnegative integers; w is an ad-
justable synaptic weight vector, s(z,) is chosen as the hyperbolic tangent function:

&9 g™ 4)

S(x)=

e’ +e”

For a desired function u’(2), there exists ideal weights w" such that smooth func-

tion u~ can be approximated by an ideal NN on a compact set Q, ¢ R?
u =w'S(z)+e,

where &, is the bounded NN approximation error, which can be reduced by increases———=

ing the number of the adjustable weights. The ideal weight matrix w’ is an artificial
quantity required for analytical purpose [3], (6]. In general it is assumed that there
exist unknown but constant weights w’', whose estimate is w(k) . Hence it is possible

to define:
w(k) = w(k)-w'
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4 The EKF Training Algorithm

Kalman filtering (KF) estimates the state of a linear system with additive state and
output white noises [1], [4]. For KF-based neural network training, the network
weights become the states to be estimated, with the error between the neural network
output and the desired output being considered; this error is considered as additive
white noise. For identification, the desired output is information generated by the
plant. Due to the fact that the neural network mapping is nonlinear, an extended Kal-
man Filtering (EKF)-type is required. The training goal is to find the optimal weight
values that minimize the prediction errors (the differences between the measured
outputs and the neural network outputs). The EKF-based training algorithm is de-

scribed by:

K (k) = P(OYH(K)[R(k)+ HT (k)P(k)H (k)] (6)
wik +1) = w(k) + K (k)[y(k) - y(k)] (7
P(k+1) = P(k)- K(k)HT (k)P(k)+ Q(k) (8)

where P(k)e R™ is the prediction error covariance matrix at step k, we R'is the
weight (state) vector, [ is the respective number of neural network weights, ye R is
the measured output, y€ R is the neural network output, K € R’ is the Kalman gain
vector, Q€ R™ is the NN weight estimation noise covariance matrix, R€ R, is the
error noise covariance, H € R’ is a vector, in which each entry (A, ) is the deriva-
tive of one of the neural network output, ( J,), with respect to one neural network
weight, (w,), as follows:

¥, (k) @
aw/ (k) w(k)=w(k+1)
where j=1,..,/. Usually P and Q are initialized as diagonal matrices, with entries

P(0) and Q(0), respectively. It is important to remark that H (k), K (k) and
P (k) for the EKF are bounded; for a detailed explanation of this fact see [8].

H, (k)=

5 Controller design

This section closely follows [3], but replacing the 6-modification learning by an EKF
one. Consider the following n inputs n outputs discrete-time MIMO nonlinear sy5”
tem  with  triangular form as shown in  (10), where with
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X(k)=[x.’ (1), (B (O 2 (B) =[x,y (k). x5 (R), 15, (4)]

k)=[u (k) u, ( ] e R" and y(k)=[x (k),,», (k)J € R" are the state
variables, the system inputs and outputs respectively; @, _, (k)= [u, (Ir),, u,, ( Ic)T
(j=2,---,n);d(k)=[d, (k),-,d, (k)]r is the bounded disturbance vector:
X, (Ic)=[x” (k)5 x,, (k)]r e R” denote the first i, states of the jth subsys-

tem; f,, (*) and g,, () are smooth nonlinear functions; and j, i, and n, are

positive integers. Based on [3] it can be seen that each subsystem of (10) is in strict
feedback form, which allows the use of the backstepping design technique. Further-
more, noting that the control inputs of the whole system are in triangular form, we
may then use backstepping in a nested manner to design stable controllers for this

class of system [3].

X4 (k+1)=f;,:, (fu (k))+g,_,. (z—',* (k)x:.pl (k)) (19)

.

x, (k+1)=1, (X (Ic))'d-gm (X (k)u, (k))+d, (k)

( X, (k'H) =-ﬂ.t, (fn.!. (k))+gn.l, (fu. (k) X+l (k))

x,, (k+1)= £, (X (k),5, .)+g“.(X(lt . (k) +d, (k)

By the transformation used in [3] the jth subsystem of the original system (10) is
equivalent to (11) which is in a sequential decrease cascade form (SDCF) (3], as

follows:
x, (k+n)=F, (%, (k))+GJ.l (B, (0)) %,z (47, 1) an
xjn =1 (k+2) = F =l (Ej,n, (k))-'-Gj.n,-l (E}.ul (k))xj,ﬂl (k+l)
x,, (k+1)=F,, (X,u,, (k))+8g,, (X)u, (k)+d, (k)
y, (k) =x,, (k)
For convenience of analysis, define 1< j<n and 154, sn, 1.
F 0 FI'J ( l-"i (k)) GJ-’: o G/-'l (Y’-": (k))
J, 0F, ( (k). 4, (k)) G, Og, (X (k))
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Then system (11) can be written as

x,, (k+n)=F, (k)+G), (k)x,, (k+n, -1) (12)

.xj.n,-l (k+2)= Fj.n,-l (k)'*'G/.n,—l (k)xj.n, (k)
X (k+2)= 1), (K)+8;a, (k)u, (k)+d, (k)
Y, (k)=x,, (k)

Now, we can define the desired virtual controls and the ideal practical controls for
each subsystem, as follows:

& (k)0 @, (%, (k)74 (k+m)) -

&, (K)0 @0, s (% (K),@0,cs (K))
£, ()0 @, (X (k). (k). @, (k)
v, (k)=2x;, (k)
where @, (l <jsSnandl<i s nj) are nonlinear functions. It is obvious that the

desired virtual controls &) (k)and the ideal control u; (k) will drive the output of

the jth subsystem to track the desired signal only if the exact system model is known
and without disturbances. However in practical applications these two conditions
cannot be satisfied. In the following, neural networks will be used to emulate the
desired virtual controls, as well the desired practical controls when the conditions
establish above are not satisfied. Therefore, in [3] they construct the controls via

embedded backstepping without causality contradiction. Let select the virtual controls
and practical controls as follows 1< j<n:

a, =W, 48, (z et (k)) (14)
4y =W, ), (21, (K))
with
2, (k)=[%L,, (k). 5, (k+n, )|
z,,, (k) =[%1, (k). ()]
2, (k) =[X (k). @, (k)]r i) =2,,m,—1

where w,, is the estimation of ideal constant w; 5, (Asjsn1si <sn). Through
the paper the following definition is used:
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w,, (k)=w,, (k)- w;',’ (18
The corresponding weights updating laws are chosen as:
W, (k+1)= W, (k)_”u, K,e., () (163
with
K,, (k)=P, (k)H,, (k)M}, (k) (7

(k) B, () H,, (O]

B, (k+1)=P, (k)=K,, (K)HI, (K)B,, (K)+Q,, (k)
S

HJ.:, (k)=[§f;:': Ek”

and e, (k) denotes the error of each step defined as follows:

e, (k) = y, (k)-y,,(k) (18)
e, (k) = x,,(k)-a,, (k)

M,, (k)=[R,, (k)H]

€, (K) = x,,, (0)-1,(B)

Let consider (3), (5), (17) and (18) then we propose the following theorem.

Theorem 1: For the closed-loop nonlinear MIMO system (10) consisting of control
(14) an adaptive law (16), there exists a SGUUB equilibrium, provided that the de-
sign parameters are properly chosen. This guarantees that all signals, including the

states X (k), the input wu(k) and NN  weight estimates
W, (=L ,m i, =1--,n) are all bounded.

Proof For the fist »m,-1 equations of the jth subsystem
G=hym iy =1,-,n, -1) with the fictitious control a';',’ (k) approximated by the
HONN o, (k) =w, J,-IS/J,-I (z, 4yl (k)) and e, J, (Ic)=xj_,l (lc)—a.'j_,J (k). Consider the
Lyapunov function candidate

19
by, (R)=5 €5, O+, (k) (8) 4

whose first difference is:
av,, (k)=V,, (k+1)-V,, (k)

1 . - 1 - -
Av,, (k):EeL’ (k+D+w,, (k+1) W, (It+1)—§ef_,‘ (k)—w}:,l (k) W, (%)

(20)
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From (7) and (6), then
w,,, (k+1)=w,, (k)+n,, K,, (k)e,, (k)
Let us define N,, (k)e R by
N,, (k)=w,,, (k) Wy, (k)+2nm,,e,, (k)W,, (k) K,, (k)
'*'77}.:, ejz.f, (k) KL, (k)K}.!, (k)

From (18), then

e, (k+1)=¢, (k)+Ae,, (k)

&, (k+1)=¢, (k)+2e, (K)de,, (k)+(ae,, (k)

where Ae,, (k) is the error difference. Using (22) and (23) in (20):

1 2
Av,, (k)=e,, (k)de,, (k) +5(Ae,',, (k) +21,,,, (K)K,,, (k)
+1}, €, (k) K7, (k) K, (k)
From (14), we obtain

de,, (k) __aa,.,J (k)
aw,, (k)  ow, (k)

Let as approximating (25) and substituting (17) and (5) yields
Ae,;, (k)=-n,, HL, (k)K,, (k)e,, (k)

Defining
1y, =min [, (k) P, (6 H,,, (KM, (0)
with M,, (k) asin (17), (26) can be rewritten as
Ae;, (k)< =114, %8, (k)
Using (27) in (24), then
A, (6) S0, ,,, 68, (B)+573,73, €, ()

+27,, ¢, (k)wj,l (k)K,, (k)
+77}.1,e;2.1, (k) K/I:f, (k)KJ.J, (k)

@1

22)

23)

(24)

(25)

 (26)

(27)
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T ] 2 (28)
AV, (k)s-n,,7,, leu, (k )| +5’712.f, Vi, Ie,_,l (k)l

_ 2 2
+2m, e, G, GlK,, Gl e, G K., 0]
The weight adaptation dynamics (21) can be written as
wjr.l, (k+1)= ﬁ’j.f, (k)'*'”j.t, KL, (k)eu, (k)= 4, (k) Wy, (k)+m,, v 4 Vi, (k)
with
Ay, (&) =[1-n,, K], (k)S(z,,, (k))] and v, (k)=K], (K)e, 29)

As in [9], in this paper the plant (10) is assumed to be BIBO, &, ~and S (z ” (k))

are bounded. Hence 4, = satisfies Lemma 1 subsequently w,, (k) is bounded. Then

in (28) AV,, (k)<0, once |e,, (k)|>«,, with x,, = T :

" ” " Y29y, =1, Y, =20, K,
where #,, is the upper bound of W,, (k) and K, is the upper bound of K, (k)
(8]; furthermore y,, >0 and 7,, >0. This implies the boundness of ¥,, (k) for
k20 which leads to the SGUUB of ¢,, (k).

For the first n, —1 equations of (10), we have show that their stability can be guar-

anteed by suitable chosen the virtual control design parameters. Let us consider the
last equation of the jth subsystem (j=1,---,n) with the fictitious control u, (k)

approximated by the HONN u, (k)=w, MJ( z,, (k)) and ¢, (k)=
x,, (k)—u, (k). Consider the Lyapunov functlon candidate

1 - - (30)
V0, (K) =265, O+, (), (K)
whose first difference is:
(1)
AVM’ (k):— (k+l)+ (k+l) o, (k+l)——e (k)—w (k) W, (k)
In a similar way as the procedure above, (31) can be written as
(32)

AVJ n, (k)=el.fr, (k) Ae). k)+_(A ) +2’71n (k) I, (k)
+17,,€1n, (K) K7, (£) K,.n,( )

with
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Aej.n, (k) = -nj.n, H}:nl (k) Kj,nl (k) e}.u, (k) (33)

Defining
Ty =min|[H], (K) P, (K)H,, ()M, (k)|

with M, (k) as in (17), (33) can be rewritten as

34
he,, (k)S=11,, 7,0, (K) (34)
Using (34) in (32), then
2 1, 2 (35)
AV],A, (k) S_nj,nj 71'"! e],n, (k)l +Eﬂj,n‘, yjz.nl ej,nl (k)l
2 2
121, ey, (|7, (O|K,, O+, e, O K, (K]
The weight adaptation dynamics can be written as
wy, (k+1)=4,, (k) wj_,l (k) +77L,1v;1_‘l (k)
with
(36)

A, (k) =[1—r]m K} (k)S(zM (k))]; v, (K)=K,,, (k)(gy'u- +id) (k))

As in [9], in this paper the plant (10) is assumed to be BIBO, &, d, (k) and

S (z ” (k)) are all bounded. Hence 4, satisfies Lemma 1, subsequently W, , ()

€ (k)|> xj.ﬂ; with Kym =

is bounded too. Then in (35) AV,, (k)<0, once

417'1_,,1 K.

=—, where %, is the upper bound of W, , (k) and K, .,

27/-"] —”]-”J 7;-"] _2’71-"1 K.f-ﬂ"
is the upper bound of X, (k) [8]; furthermore y,, >0and7,, >0. This implies
the boundness of ¥,, (k) for k20 which leads to the SGUUB of ¢, , (k).

6 Simulation Results

Consider the following MIMO discrete-time nonlinear system:

X1 (k'H) =S (fn (k))"‘gu (fn (k)) X2 (k)
X2 (k 'H) = f;.z (Elz (k))+gl.2 (le (k)) y (k)+dl (k)
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X2, (k+1) = /a1 (EZ.I (k))+g” (El.l (k)) Xy, (k)
X312 (k+1)= S22 (Ez,z (k))+gz.z (fz,z (k)) u, (k)+d, (k)

y (k) =x, (k) y, (k)= x, (k)
with
S (‘fll (k)) =%];|2(1%; 8 (fn (k))= 0.3 g, (fu (k)) =1
- xu (k)
a5 )= F o oy, G s

d, (k)=0.1cos(0.05k)cos(x,, (k))

fua (%21 (K)) = %

&2, (Ez.l (k)) =02, g,, (-?” (k)) =1

B _ x:.l (I‘)“lz (k)
Sr2 (Fa (K), 4, (k))— 14x (k)+x2, (k)+x2, (k)

d, (k) =0.1cos(0.05k)cos(x,, (k))

The control objective is to drive the output y(k) =[y, (k), y,(k)]" of the system to
follow the desired reference signals:

1 nTk 7Tk 1 . (#xTk . [ 7Tk
Yy, =0.5+—cos| — |+sin y Vs, =0.54+—=sin{ — |+sin| —
: 4 4 2 ! 4 4 2

with T =0.01. The initial conditions for the system are x,,(0)=0, x,(0)=0, and
x,,(0)=0, x,,(0)=0. All the weights, the virtual and practice controls are initial-

ized as random numbers. The results are presented in Figure 1 as follows. The first
two figures portray the tracking performance of the two outputs of the plant and their
references, respectively and the third figure displays the weights performance.

Conclusions

This paper has presented an application of HONN to solve the tracking problem for a
specific class of MIMO nonlinear systems in discrete-time. The training of the neural
network was performed on-line using an extended Kalman filter. The boundness of
the tracking error was established on the basis of the Lyapunov approach. The pur-
pose of this paper is to improve the tracking performance of that work by mean of the
use of the EKF as the neural network learning algorithm; this approach is validated
by the simulation results presented above. The HONN training with the learning algo-
rithm based in EKF present good performance even in presence of larger bounded

disturbances.
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(a)
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Fig. 1. a) Tracking performance y, (k) (solid line) and y, (k) (dashed line); b) Tracking
performance y, (k) (solid line) and Y4, (k) (dashed line); c) Weights performance
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